0 Frequency dependent hyperpolarizabilities of atoms ; calculations using density - functional theory
نویسنده
چکیده
Using the orbitals generated by the van Leeuwen-Baerends potential [Phys. Rev. A 49, 2421 (1994)], we calculate frequency-dependent response properties of the noble gas atoms of helium, neon and argon and the alkaline earth atoms of berrylium and magnisium, with particular emphasis on their nonlinear polarizabilities. For this, we employ the time-dependent Kohn-Sham formalism with the adiabatic local-density approximation (ALDA) for the exchange and correlation. We show that the results thus obtained for frequencydependent polarizabilities (both linear and nonlinear) of the inert gas atoms are highly accurate. On the other hand, polarizabilities of the alkaline earths are not given with the same degeree of accuracy. In light of this, we make an assessment of ALDA for obtaining linear and nonlinear response properties by employing time-dependent density-functional theory.
منابع مشابه
Analytic density functional theory calculations of pure vibrational hyperpolarizabilities: the first dipole hyperpolarizability of retinal and related molecules.
We present a general approach for the analytic calculation of pure vibrational contributions to the molecular (hyper)polarizabilities at the density functional level of theory. The analytic approach allows us to study large molecules, and we apply the new code to the study of the first dipole hyperpolarizabilities of retinal and related molecules. We investigate the importance of electron corre...
متن کاملApplying Density Functional Theory to Study NLO Properties of Benzyne-Based Chromophores
Density Functional Theory (DFT) calculations were employed to investigate the structural characteristics, electronic properties, and nonlinear optical properties of Benzyne-Based Chromophores at B3LYP/6-31G(d,p) level. The effects on the hyperpolarizabilities of various donor and acceptor substituent (H, F, Cl, Br, Me, NH2, OH, NH3+, COOH, CHO, CN, NO,NO2 ) were studied. The results reveale...
متن کاملRationalizing the Strength of Hydrogen-Bonded of Molybdate-Phosphonic acid Complex (1:2): Density Functional Theory Studies
The relative stability of hydrogen-bonded of Molybdate-Phosphonic Acid (MPA) complex (1:2) ingas phase has been carried out using Density Functional Theory (DFT) methods. The methods are usedfor calculations are B3LYP, BP86 and B3PW91 that have been studied in two series of basis sets: D95**and 6-31+G(d,p) for hydrogen and oxygen atoms; LANL2DZ for Mo and Phosphorus. Predictedhydrogen-bond geom...
متن کاملAdsorption of ozone molecules on AlP-codoped stanene nanosheet: A density functional theory study
Density functional theory calculations were carried out to investigate the structural and electronicproperties of the adsorption of O3 molecules on AlP-codoped monolayers to fully exploit the gas sensingcapability of these two-dimensional materials. Various adsorption sites of O3 molecule on the considerednanosheets were examined in detail. The side oxygen atoms of the O3 mole...
متن کاملA Density Functional Theory Study of Boron Nitride Nano-Ribbons
The electronic and structural properties of pristine and carbon doped (C-doped) boron nitride nano-ribbons(BNNRs) have been studied employing density functional theory (DFT) calculations. Total energies, gapenergies, dipole moments, and quadrupole coupling constants (qcc) have been calculated in the optimizedstructures of the investigated BNNRs. The results indicated that the stability and gap ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000